Impact of automated ICA-based denoising of fMRI data in acute stroke patients
نویسندگان
چکیده
Different strategies have been developed using Independent Component Analysis (ICA) to automatically de-noise fMRI data, either focusing on removing only certain components (e.g. motion-ICA-AROMA, Pruim et al., 2015a) or using more complex classifiers to remove multiple types of noise components (e.g. FIX, Salimi-Khorshidi et al., 2014 Griffanti et al., 2014). However, denoising data obtained in an acute setting might prove challenging: the presence of multiple noise sources may not allow focused strategies to clean the data enough and the heterogeneity in the data may be so great to critically undermine complex approaches. The purpose of this study was to explore what automated ICA based approach would better cope with these limitations when cleaning fMRI data obtained from acute stroke patients. The performance of a focused classifier (ICA-AROMA) and a complex classifier (FIX) approaches were compared using data obtained from twenty consecutive acute lacunar stroke patients using metrics determining RSN identification, RSN reproducibility, changes in the BOLD variance, differences in the estimation of functional connectivity and loss of temporal degrees of freedom. The use of generic-trained FIX resulted in misclassification of components and significant loss of signal (< 80%), and was not explored further. Both ICA-AROMA and patient-trained FIX based denoising approaches resulted in significantly improved RSN reproducibility (p < 0.001), localized reduction in BOLD variance consistent with noise removal, and significant changes in functional connectivity (p < 0.001). Patient-trained FIX resulted in higher RSN identifiability (p < 0.001) and wider changes both in the BOLD variance and in functional connectivity compared to ICA-AROMA. The success of ICA-AROMA suggests that by focusing on selected components the full automation can deliver meaningful data for analysis even in population with multiple sources of noise. However, the time invested to train FIX with appropriate patient data proved valuable, particularly in improving the signal-to-noise ratio.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملImpact of Mild Hypothermia on the Recovery of Patients with Acute Stroke
Background and Objective: Hypothermia induction has been proposed to improve the recovery process of stroke in the last two decades. Therefore, the aim of this study was to investigate the effect of mild hypothermia on the recovery of patients with acute stroke. Materials and Methods: This single-blind randomized clinical trial was conducted on 60 patients with acute stroke in 2018 in Hamadan,...
متن کاملارتباط سطح سرمی پروتئین واکنشگر C-با تنگی عروق داخل و خارج مغزی در بیماران مبتلا به سکته مغزی ایسکمیک حاد
Background and Objective: Previous studies have been shown that serum level of C-reactive protein (CRP) is significantly correlated with mortality and functional outcome in patients with ischemic stroke. Some studies point to specific vessels involvement according to different serum level CRP. The aim of this study was to investigate the association between serum C-reactive protein level ...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملAutomatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers
Many sources of fluctuation contribute to the fMRI signal, and this makes identifying the effects that are truly related to the underlying neuronal activity difficult. Independent component analysis (ICA) - one of the most widely used techniques for the exploratory analysis of fMRI data - has shown to be a powerful technique in identifying various sources of neuronally-related and artefactual f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017